
Explore the Possibility of Fine-grained
Non-encrypted Distributed Model Service: an

Adversary View
*Course Project Type: Research

Bohan Cui
Department of Computer Science and Technology

Nanjing University
Nanjing, China

bohan.cui@outlook.com

Abstract—The increasing computational demands of large-
scale machine learning models have made their training and
deployment both expensive and resource-intensive. Traditional
approaches to protect the intellectual property (IP) of these
models, such as encryption, introduce significant overhead. This
paper explores the possibility of deploying models in a fine-
grained, non-encrypted distributed manner to untrusted devices.
By partitioning model parameters into small blocks and dis-
tributing them across numerous devices, we aim to make the
reconstruction of the complete model by adversaries compu-
tationally infeasible and financially unattractive. We propose a
threat model to assess this approach and conduct experiments
to evaluate its effectiveness. Our findings indicate that this fine-
grained distribution can effectively protect model IP, provided
the system can tolerate a certain level of additional overhead.

Index Terms—IP protection, Privacy, Distributed system,
MLaaS.

I. INTRODUCTION

Nowadays, the consumption of the machine learning models
becomes much larger and larger, which make the inference
and training of these models expensive, time-consuming and
power-consuming. [1] The training of GPT4 model consumed
electricity equal to the consumption of medium-sized Euro-
pean country.

Fig. 1. The power consumption of the inference of GPT3 and GPT4 [3]

Under this circumstance, some cloud computing enterprises
sell computing power to the AI companies, research institutes
or governments to train a model or deploy the model service,

Cybersecurity and Privacy Course, 24 Fall

which is named Machine Learning as a Service (MLaaS). In
this way, the Machine learning model can be regard as a com-
modity with high business value. Therefore, the Intellectual
Property (IP) of the models is expected to be protected well
when the models are deployed on the third-party computing
power suppliers, especially on untrusted entities.

In MLaaS aspect, to offer a more power-efficient and cheap
solution for the MLaaS, we proposed a system AwfulOwl1 to
utilize the idle computing resources on the edge devices and
mobile phone, in which we distribute the model to a certain
amount of untrusted users’ devices for execution.

In this article, we focus on the IP privacy concern of
AwfulOwl or any other systems like AwfulOwl. Traditionally,
when model are deployed on cloud computing server, the IP
is usually protected by encryption [6]. 2

The encryption technique will introduce quite a large over-
head to the training and inference, which will improve the cost
of some enterprise or hinder the model from being deployed
on some scene. [2] Therefore, we explore the possibility
to deploy the model to the devices without encrypted, by
chopping the parameters into small blocks. With these fine-
grained distribution, the pirate needs to take much longer time
to reconstruct the model than training the model itself, thus the
attack behaviour will become meaningless in financial aspect.

This project propose a threat model for this system and we
combines the experiment, calculation and review to discuss
the probability of this protection practice. And we find it can
effectively protect the the IP if the system can afford a certain
threshold of extra overhead.

All the codes of this project is published on Github3.

1This project has not be published up to now. Once it is available, you
can access to it at https://github.com/AwfulOwl-Community, if we decide to
make it open-source.

2Techniques like TEE are not realistic on client-side devices.
3The repository is https://github.com/Jackcuii/CyberSecProj2024

https://github.com/AwfulOwl-Community
https://github.com/Jackcuii/CyberSecProj2024


II. CHALLENGES AND MODELING

Our problem is based on 4 assumptions of the system as
below:

1) The model is not encrypted, so the controller of the de-
vice holding the parameters can access the data directly.

2) The pirate can only control part of the parameters, for the
parameters are distributed to a large amount of devices.

3) All the devices are untrusted, which means any of the
devices are possible to be hijacked by the pirate.

4) There is a dataset can valuate the model and be accessed
by everyone.

And we define protecting the IP of the model as avoiding the
attacker getting a duplicate of the whole model with similar
performance. And the effort of the pirate should be lower than
the original training or retraining the model.(We define effort
as GPU hour here.)

We define Si and Pi as the strategies or the facts of the
service provider and pirate. i means the level of the strate-
gies/facts. We assume the attacker and the service provider
upgrade the techniques according to each other’s. Therefore,
Sk targets Pk−1 and Pk targets Sk−1. Specially, S0 refers
to the system with no protection. Then we will give detailed
definitions for the strategies/facts we are going to discuss.
Original system (S0) We define our original system as
multiple untrusted devices, and the whole architecture of the
model is mapped to the devices in this system in a static
pattern. All the devices can be managed to communicate with
others. The input of the model is flowed to some of the devices,
and the result of the model can be gotten from some of the
devices. When training the model, the input can also be the
grad and the directions can be reversed. Here in Fig we display
an system adopting pipeline parallel and tensor parallel as an
example. The parameters belonging to the layer 1(blue) are
stored in some of the devices and those belonging to layer
2(yellow) are stored in the others.

Fig. 2. Original System

Naive attack (P1) In the following figures, the parts under the
shadow are regarded as invisible or inaccessible to the pirates.
And the devices and information acquired by the pirates are

marked with red. We assume that the attacker can control
part of all the devices and they know the exact position of
the parameters hosted in the devices in the whole model (i.e.
which layer they belong to and where they are in the parameter
matrix of the layer). We will evaluate the performance of such
a ’stolen’ part in the experiment hereinafter.

Fig. 3. Naive attack

Complexity of the operators (S1) In the real scene, the
attackers actually can hardly get the true position of the param-
eter blocks they control. Then we can have an approximation
on it. We define G as the number of the blocks. Then the
possibility of the having the blocks is 1

AN
N

, which means the
space of the solution is O(N !). But what if they do not have
the parameter blocks in the right place? We will introduce the
experiment result in the next part.

Fig. 4. Complexity of the operators

Solve the real position (P1) Then we assume the attacker
knows which layer the blocks belong to somehow, then they
try to solve the real position of such blocks. Instead of Brute
Force, the attackers actually can have more smart attacking
methods, to search in the solution space, like heuristic algo-
rithms or machine learning methods.
Complexity of the architecture (S2) Then we take the as-
sumption in P1 into account. For one thing, some commercial



companies will not publish the detailed architecture of their
model. For another, the parameters are usually just floating
point tensors, with no clues or pattern to show the layer
they belong to. Therefore, the attacker can not directly do
the searching on a subset of parameter blocks they acquire,
which increases the difficulty of duplicate the model.
Stream hijacking (P2) To gain some knowledge of the
architecture of the model, the attacker can do some analysis
on the covert channels, to be more specific, the stream of the
data. Due to the fact that the whole system is connected by
the Internet, the pirates are likely to eavesdrop the streams
between the devices. We will propose a method to analyze
the streams.

Fig. 5. Stream hijacking

Stream Obfuscation (S3) To hide the pattern of the commu-
nication between the devices, the system can add some extra
fake-stream to the normal streams. So it can mix the pattern
to hide the layers from analysis.

III. DESIGN AND RESULTS OF P1

We choose the VGG16 CNN as the object of our experi-
ment. We adapt the output to 100 to fit the CIFAR-100 dataset.
We use pre-train the VGG-16 100 epoches on the CIFAR-
100 from random initial values. Then the model achieves 61&
accuracy on the CIFAR-100 test set. We use this snapshot as
the baseline of the experiment.

The device we used was NVIDIA RTX-4060 GPU, and we
use about 2 hours to pre-train the model. Therefore, the cost
of the model is 2 GPUhours on RTX-4060.

We focus on the largest layer of the MLP, which is a 25088×
4096 matrix. The granularity of our experiment is 256× 256.
So the layer of the model will be distributed to 16×98 devices.
So we will test the situation that the pirates control different
proportions of the devices.

So we only reserve part of model blocks, and set other parts
to zero and run the testset on it to get the accuracy of the
model. Actually, the process is equivalent to a coarse-grained
dropConnect. We ranged the drop rate from 50% to 100% and
ran 3 times for each rate to get the average accuracy. Then we
plot the figure as below (Fig.6).

Fig. 6. Experiment Result

We can observe an obvious decrease of the accuracy when
the drop rate is larger than 90% and a sharp drop when it
is larger than 95%. Therefore, if the pirate get control of
10% of the devices, given they know the exact position of
the parameter blocks.

IV. DESIGN AND RESULTS OF S1

Then we will test whether the performance decrease is
acceptable if the parameter blocks are not at the right position.
We simulate this situation by randomly exchange some of the
given blocks. So we have two variables in this part, the drop
rate and the exchange pair sum. The drop rate ranges from
85% to 100% and exchange pair sum ranges from 0 to 350.
The result is displayed below.

The 3D plot is shown on the left, and to more intuitionally
display the result, we adopt a contour plot to show the
relationship between position-correctness and accuracy(Fig.7).

Fig. 7. Experiment Result

The contour plot shows that when the drop is from 85% to
90%, the left model is only tolerant to only 25 pairs’ exchanges
of the blocks. Otherwise, the accuracy will drop significantly
(by at least 10%). Therefore, the performance is not acceptable
to the attacker if they can not figure out most of the right
positions of the parameters.



V. DESIGN AND RESULTS OF P1

The formal description of the searching of the right positions
is as below.

Given a function V al, a set of values S, among all the
orders of S, find max(V al(order(S)))

This is a combination optimization problem. We can adopt
Reinforcement Learning and Heuristic Searching.

Genetic Algorithm: Any position combination of the blocks
is an object in the population. And the fitness function is
the accuracy of the model. Objects evolve by exchange the
position of the blocks.

Reinforcement Learning: The agent is the pirate. The envi-
ronment is the model evaluation. The action is the exchange
of the position of the blocks. The reward is the accuracy of
the model.

The population of the genetic algorithm is tested with the
range from 10 to 100 and iterated 10000 generations to get the
best combinations. The results show that all the groups only
have 1% (equals to randomly yield output from any input).

Then we will give explanation to the result of the experi-
ment. To search an informative solution, we must have some
clue/pattern from the beginning and mix them to generate more
informative solutions.

• The space of the solution in the example is very large.
Go(AlphaGo): 361!, This example: 1568! So a very
powerful structure is needed.

• The probability of having some right clues in the initial
state of the genetic algorithm.
P ( clue ) = 1

16×98 ×
(
15
16

)(156−1)

E(1 clue in all population ) = 0.000452
So it naturally has only 1% (equals to randomly) accuracy

Thus, the attack will fail if the system divides the model
finely enough. When it comes to a certain system, there exists
an acceptable upper bound of the division.

From the experiments above, there is an threshold of the
granularity of the system. And we will calculate this value
below for this scene.

We assume the size of the training set is Size(Tr), test set is
Size(Ev), Epoch is Ep and the time of doing one propagation
is T .

Therefore, the training time is

Ttr ≈ 2T · Size(Tr) · Ep

The attacking algorithm’s generation is gen, the block sum
is N , the population is Pop

Then
P (clue) =

1

N
· (1− 1√

N
)N−1

E(1 clue in all population) = Pop · P (clue)

The attacking time is

Tak ≈ gen · Pop · Size(Ev) · T

The most optimistic approximation is

E(1 clue in all population) ≥ 1

There is another important factors of Tak, the precision of
the accuracy when test the combination. If the precision is too
low, the subtle increase of the correctness of the combination
will not cause one more prediction to become right, then it will
not lead to the variation of the accuracy. Then the algorithm
will not converge. (A figure to show this situation Fig.8) So
we should take the precision Pr into account.

Pr =
1

Size(Ev)

The condition of successful attack is Tak ≤ Ttr and
E(1 clue in all population) ≥ 1

Then

gen · Pop · 1

Pr
≤ 2 · Size(Tr) · Ep

Pop · 1
N
· (1− 1√

N
)N−1 ≥ 1

Set the constants according to the real situation and solve
the binary inequality. Get the result minimum of the N and
check if it is possible to distribute the model into N part.
Then the architect can very roughly determine if this practice
is useful on a certain system.

Fig. 8. Continuous and Discrete

VI. METHODS FOR P2 AND S3

The stream information can be classified into sequential
or flatten. Examples are given to elaborate the two kinds
respectively. We proposed an algorithm to analyze the streams
to divide the nodes int layers/operators for each of these two
types.
Sequential Information We can assume a MapReduce [5] like
system as below (Fig.9).

And we assume the attacker can get the sequential informa-
tion of the stream, which means he knows the timestamp of all
the communications. In this system, 3 parts from the 3 layers
respectively are hosted in each device. Therefore, given the



Fig. 9. Diagram in MapReduce Article [5]

Fig. 10. Sequential Information

attacker knows the sequence of communication, he can figure
out the corresponding part for each layer, as below(Fig.10).

According to the pattern of the information, we can find
that it is easy to find the joint point in the topology. So we
find the k-cut vertex for the graph, then we use these cut
vertices to divide the graph (the entry/exit are also regarded
as pivots). Then each part of the system has large probability
to be in the same layer/operator. The pseudo codes are shown
in Algorithm 1.

Algorithm 1 Divide by Sequential Information
Require: G = (V,E) is a graph with designated entry and

exit vertices
Ensure: A sequence of vertex layers

1: function DIVIDESEQ(G)
2: k ← SOLVECONNECTIVITY(G)
3: vertices← ∅
4: cutV ertices← FINDKCUT(G, k)
5: vertices← {entry} ∪ cutV ertices ∪ {exit} ▷

Include entry and exit
6: layers← ∅
7: for all consecutive vertices vi, vi+1 ∈ vertices do
8: layer ← {v ∈ V | v lies between vi and vi+1}
9: layers← layers ∪ {layer}

10: end for
11: return layers
12: end function

Flatten Information The information gotten by the attacker
can also be flatten, which means the streams do not have
timestamps so that the attacker can not know the order of
the streams. So the ’bottleneck’ is not obvious for these

information. We assume there exists a system exploiting the
pipeline(Fig.11).

Fig. 11. System

A better solution is to use the transitive closure. We can
observe the proportion of the parallelism. We can solve tran-
sitive closure for the graph and get the sum of the reachable
nodes for each node. In dataflow driven systems, along the
flow of the data, the reachable nodes decreases monotonically.
Therefore parallelism can be regarded as the same reachable
nodes. We can find the sum which the least nodes have, so the
nodes with with these sum can be regarded as not so parallel
and likely to be the pivots of the layer/operator. Algorithm 2
shows the algorithm described above.

The result of the example is shown in the figure below. The
threshold is set to 2. The reachable sum is marked on the
blocks. And the pivots are marked with star. The figure 12
shows that the algorithm works well on the given diagram.

Fig. 12. Result of the Algorithm

Obfuscation To obfuscate the streams between the devices,
we can use a Machine Learning method.4.

We assume the model is M , the input G < E, V > is
the original info graph. The G′ < E′, V > is the output of
M . The labels are S = {S1, S2, S3...Sk}. The predictions are
P = {P1, P2, P3...Pm}. The function Div is the function to
divide the graph into subsets, which is mentioned above.

Therefore
G′ = M(G)

And
P = Div(G′) = Div(M(G))

the loss can be

4Because I really lack device to find the hyper-parameter for the model, so
I only offer a theoretical formula here



Loss(M) =
Σi,j∈G,i̸=j,i∈Pu,Sx,j∈Pv,Sy credit(i, j)

V k
+∆G

credit(i, j) =

{
b, if (x⊕ y)⊕ (u⊕ v)

a, otherwise

∆G = c ·Diff(G,G′)

a and b are hyper-parameters indicates the reward of correct
prediction and penalty of the wrong prediction.

∆G is like a regularization term and Diff can be any
function to evaluate the increasing of the streams. For example,
it can just be

Diff(G,G′) = Σe∈E′⊕E 1

And c is a hyper-parameter for the penalty for unit increasing
of stream. This regularization term serves as the penalty of
the extra communication overhead the obfuscation poses on
the system.

Then we can train the M with the given Loss function to
train a transformation model to generate obfuscated plan.

Algorithm 2 Divide by Flatten Information
Require: G = (V,E) is a directed graph

th is a threshold value
Ensure: A sequence of vertex groups divided by pivots

1: function DIVIDEFLATTEN(G, th)
2: closure← TRANSITIVECLOSURE(G)
3: for all v ∈ V do
4: reachable[v]← |{u ∈ V | (v, u) ∈ closure}| ▷

The reachable of nodes are monotonic along the ’dataflow’
5: end for
6: sorted nodes← SORT(V, by reachable[v]
7: in descending order)
8: freq ← COUNTFREQUENCY(reachable)
9: for all n ∈ UNIQUEVALUES(reachable) do

10: if freq[n] < th then
11: pivots ← pivots ∪ {v ∈ V | reachable[v] =

n}
12: end if
13: end for

▷ Entry/Exit node is always a pivot(Unique
Max/Min of reachable)

14: groups← ∅
15: for all consecutive pivots pi, pi+1 ∈ pivots do
16: group← {v ∈ V | v lies between pi and pi+1}
17: if group ̸= ∅ then
18: groups← groups ∪ {group}
19: end if
20: end for
21: return groups
22: end function

VII. RELATED WORK

AwfulOwl-like system being an obscure architecture, its IP
protection is never mentioned. So we list some researches on
normal IP protection and the system itself5: [7] [8] [9] [10]

VIII. CONCLUSION

In our research, we offer basic proofs to prove that it is
possible to protect the intellectual property of the model by
divide the parameters into small parts, as long as the provider
can bear the overhead of the fine-grained distribution.

And we propose a method to attack/protect the structure
of the model by analyze/obfuscate the stream of the model,
which can threat/strength the IP privacy of the model.

IX. DISCUSSION

IP protection of ML models is much more urgent than the
normal software commodity. The competitiveness of regular
software industry is always market share and user retention.
So sometimes small-scale spread of pirate version is not so
severe. But the barrier-to-entry of AI company is the large
cost of training model itself, so leak of model will make the
market into a chaos.

Then I tend to have a negative prediction on the value of
this problem in the long run. The cost of training a model
is always not affordable for small companies. But with the
progress of the scaling, the model will finally be too large
and too expensive to be trained by any single company [4].
At that time, the state-of-art model can only be trained by a
union of a large bunch of AI companies and be open-source.
(If not open-source, they will be Cartel which is not allowed
by any stable government.) If the model becomes open-source,
IP protection issue is not so important.

X. LIMITATIONS

Note: This part seems not supposed to appear in a normal
academic article. But this is a course report and exactly some
of the experiments can not be conducted due to the limitation
of the hardware resource and time, So I believe it is necessary
to list them here.

• Different from most of researches in C&P, which
find/target a valid attacking method, this project is related
to an attacking method proved unsuccessful. However,
from the commercial aspect, proving to be safe is a
key factor to attract investment and secure a commercial
success.

• We assume the cost of training increase linearly relatively
to scale. This is not the most general case.

• Due to the tight budget, the model may not reach the
extreme performance of a certain structure (and the VGG
structure is not state-of-art) in the experiment, which is
different from the common case. So the approximation
of accuracy loss can be a bit optimistic.

• The conclusion is mostly based on CNN. Proofs on other
classic architecture are limited.

5More generally, it is called Crowd Computing



• Some of the experiments are not conducted due to lim-
ited GPU devices.(e.g. P2: ML method can be a better
method, S3: not really train a model to evaluate the
method.)

• For P2 and S3, if we both adapt ML method, a GAN
may be a better solution.

• An interesting idea was encountered when conducting
this project that if the attacker get full knowledge of
part of the model , to what extent can the attacker
accelerate the duplicating of the model with existing
methods. (Simulate the scene that part of the database
of an AI company leaks.)

ACKNOWLEDGMENT

Thanks for Prof.Wu, Prof.Xu and TA Wendi’s (NJU, Na-
tional Key Lab for Novel Software Technology) kind help and
instructions in this semester.

Thank my friend Rong Zhang (THU, Department of Au-
tomation) for borrowing me his RTX-4060 to conduct the
experiments.

Some codes of the experiment are written with the assis-
tance of GPT.

REFERENCES

[1] J. Getzner, B. Charpentier, and S. Günnemann, ”Accuracy is not the
only Metric that matters: Estimating the Energy Consumption of Deep
Learning Models,” arXiv preprint, arXiv:2304.00897, 2023. [Online].
Available: https://arxiv.org/abs/2304.00897

[2] D. Peringanji, ”Unlocking the Future: Privacy-Preserving ML Ex-
perimentation,” International Journal for Research in Applied Sci-
ence and Engineering Technology, vol. 12, pp. 350-356, 2024. doi:
10.22214/ijraset.2024.60969.

[3] M. Rebuzzi, ”Energy Consumption of ChatGPT Responses,”
Baeldung on Computer Science, Jul. 8, 2024. [Online]. Available:
https://www.baeldung.com/cs/chatgpt-large-language-models-power-
consumption. [Accessed: Jan. 18, 2025].

[4] I. Sutskever, ”Sequence to sequence learning with neural networks,”
NeurIPS 2024 Test of Time Award, YouTube, Dec. 2024. [Online].

[5] J. Dean and S. Ghemawat, ”MapReduce: Simplified Data Processing on
Large Clusters,” in *Communications of the ACM*, vol. 51, no. 1, pp.
107-113, Jan. 2008.

[6] M. Xue, Y. Zhang, J. Wang, and W. Liu, ”Intellectual property protection
for deep learning models: Taxonomy, methods, attacks, and evaluations,”
IEEE Transactions on Artificial Intelligence, vol. 3, no. 6, pp. 908–923,
2022.

[7] Pramanik, P.K.D., Pal, S. & Choudhury, P. Mobile crowd computing:
potential, architecture, requirements, challenges, and applications. J Su-
percomput 80, 2223–2318 (2024). https://doi.org/10.1007/s11227-023-
05545-0

[8] A. Chakraborty, A. Mondai, and A. Srivastava, ”Hardware-assisted
intellectual property protection of deep learning models,” in *2020 57th
ACM/IEEE Design Automation Conference (DAC)*, 2020, pp. 1–6.

[9] L. Gomez, A. Ibarrondo, J. Márquez, and P. Duverger, ”Intellectual
property protection for distributed neural networks,” 2018.

[10] J. Zhang, Z. Gu, J. Jang, H. Wu, M. Ph. Stoecklin, H. Huang, and I.
Molloy, ”Protecting intellectual property of deep neural networks with
watermarking,” in *Proceedings of the 2018 on Asia Conference on
Computer and Communications Security, ASIACCS ’18*, New York,
NY, USA, 2018, pp. 159–172. Association for Computing Machinery.


	Introduction
	Challenges and Modeling
	Design and Results of P1
	Design and Results of S1
	Design and Results of P1
	Methods for P2 and S3
	Related Work
	Conclusion
	Discussion
	Limitations
	References

